Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed

نویسندگان

  • Luoke Hu
  • Ying Liu
  • Niels Lohse
  • Renzhong Tang
  • Jingxiang Lv
  • Chen Peng
  • Steve Evans
چکیده

A considerable amount of energy consumed by machine tools is attributable to non-cutting operations, including tool path, tool change, and change of spindle rotation speed. The non-cutting energy consumption of the machine tool (NCE) is affected by the processing sequence of the features of a specific part (PFS) because the plans of non-cutting operations will vary based on the different PFS. This article aims to understand the NCE between processing a specific feature and its preor post-feature, especially the energy consumed during the speed change of the spindle rotation. Based on the developed model, a single objective optimisation problem is introduced that minimises the NCE. Then, Ant Colony Optimisation (ACO) is employed to search for the optimal PFS. A case study is developed to validate the effectiveness of the proposed approach. Two parts with 12 and 15 features are processed on a machining centre. The simulation experiment results show that the optimal or near-optimal PFS can be found. Consequently, 8.70% and 30.42% reductions in NCE are achieved for part A and part B, respectively. Further, the performance of ACO for our specific optimisation problem is discussed and validated based on comparisons with other algorithms. © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Check Tic-coated Tungsten Carbide Tool Wear in Machining Steel

In industrial production systems, including the most important factors in the economic field machining operations, reduce tool wear due to abrasive nature of the phenomenon on many factors, including temperature Lathe tool, influences, machining conditions (cutting speed, speed losses, forcing to rebuild parts of the manufacturing tolerances disassemble tool wear is caused by the phenomenon, as...

متن کامل

Influence of the Tool Edge Geometry on Specific Cutting Energy at High- Speed Cutting

This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different g...

متن کامل

Minimising the machining energy consumption of a machine tool by sequencing the features of a part

Increasing energy price and emission reduction requirements are new challenges faced by modern manufacturers. A considerable amount of their energy consumption is attributed to the machining energy consumption of machine tools (MTE), including cutting and non-cutting energy consumption (CE and NCE). The value of MTE is affected by the processing sequence of the features within a specific part b...

متن کامل

Analysis of Milling Process Parameters and their Influence on Glass Fiber Reinforced Polymer Composites (RESEARCH NOTE)

Milling of fiber reinforced polymer composites is of great importance for integrated composites with other mating parts. Improper selection of cutting process parameters, excessive cutting forces and other machining conditions would result in rejection of components. Therefore, machining conditions are optimized to reduce the machining forces and damages. This work reports practical experiments...

متن کامل

Machinability evaluation of Titanium alloy in Laser Assisted Turning

The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017